Erweiterung des Rotationszugbiegens zu einem teilkinematischen Verfahren mit reduzierten Werkzeugflächen

„Wer Kunststoff kennt, nimmt Stahl!“

Ein altbekannter Spruch in unserer von Stahl geprägten Region. Aber wie viel Stahl braucht ein Produktionswerkzeug eigentlich wirklich? Diese Frage haben wir vom Lehrstuhl für Umformtechnik (UTS) uns im DFG Projekt „Erweiterung des Rotationszugbiegens zu einem teilkinematischen Verfahren mit reduzierten Werkzeugflächen“ gestellt.

Verfahren und Werkzeuge

Rohrbögen werden im industriellen Produktionsalltag mittels Rotationszugbiegen gefertigt. Beim Rotationszugbiegen wird das Profil um eine innen liegende Biegeform gebogen. Damit das zum Biegen notwendige Moment aufgebracht werden kann, wird das Profil einseitig durch den Gegenhalter geführt. Das andere Ende des Profils wird mit der Klemmbacke an die drehbar gelagerte Biegeform geklemmt.

Schematische Darstellung des Rotationszugbiegens (links). Prozessvideo (rechts)

Aufgabe im DFG Projekt war es, die bestehenden formgebunden Werkzeugelemente des Rotationszugbiegens geometrisch aufzulösen und zu vereinfachen.

Dies ermöglicht:

  • erhöhte Flexibilität des Umformprozesses
  • wirtschaftliche Produktion kleinerer Losgrößen
  • individualisierte Produkte

Über eine Flächenreduktionsmethode wurden schräg angestellte Kontaktflächen statt der bisherigen, voll umschließenden Werkzeuge abgeleitet.

Zum direkten Vergleich mit der konventionellen Bauform wurden diese neuartigen Werkzeuge zunächst aus Werkzeugstahl hergestellt. Mit dem Ziel der Flexibilisierung des Rotationzugbiegens können die geneigten Werkzeugflächen vertikal verstellt werden, so dass Rohre mit Durchmesser von 25 mm und 30 mm um 90° gebogen werden können. Untersucht wurden Rohre aus den Werkstoffen Edelstahl und Messing. Die Wanddicke betrug 1 mm und 2 mm.

Ergebnisse

Im Vergleich zu den konventionellen Werkzeugen ist die Deformation der Rohre stärker ausgebildet, und nimmt mit abnehmender Wanddicke zu.

Deformationsvergleich nach 90 ° Biegung: Unterschied konventionellen zu vereinfachten Werkzeugen (a). Abweichungsscan der gefertigten Rohrbögen (b)

Alle Proben weisen eine Falte am Innenbogen vor der Klemmbacke auf. Rückzuführen ist dies auf die fehlende Unterstützung im Biegeformgrund, was sich auch in den Simulationen in abgeschwächter Form zeigte und für die Qualität einen akzeptablen Umfang des Toleranzmerkmals darstellt.

Darf es eine Schicht mehr sein?

Nach den positiven Projektergebnissen mit dem reduzierten Werkzeug haben wir im Anschluss des Projekts gedacht: „Wer Kunststoff kennt, der nimmt auch Kunststoff!“

Also wurden alle Werkzeugteile auch aus Polylactide (PLA) beim Fab Lab Siegen auf 3D Druckern additiv gefertigt. Die Flexibilität des Projektes mit reduzierten Werkzeugflächen zu biegen, wird durch den additive Tooling Ansatz weiter gesteigert, da so vereinfachte Werkzeugeinsätze on-demand aus kostengünstigerem Kunststoff gedruckt werden können.

Aus Sicht des Profils erreicht man eine bessere / glattere Oberfläche. Auch die Faltenausprägung liegt in gleicher Größenordnung. Aber wer will schon gerne Falten haben? Ein Blick auf den im Innenbogen liegenden Faltenglätter zeigte, dass dieser der hohen Belastung nicht standgehalten konnte.

Flächenreduzierter Werkzeugsatz aus PLA zum Rotationszugbiegen von Metallrohren (oben)
 
Deformationsvergleich: Unterschied konventionellen zu PLA Werkzeugen (unten)

In einer Anpassung des Werkzeugkonzepts konnte abschließend ein Rohr mit vergleichbarer Qualität wie mit den konventionellen Werkzeugen gebogen werden.

Bleibt noch die Frage wie viel Profile kann mit einem PLA-Werkzeug gebogen werden. Wenn du dies beantworte willst, komm zu uns.

Hier noch mal ein fettes Dankeschön an das Team vom Fab Lab Siegen für die Unterstützung.

Umfrage zur Gründungskultur | ventUS

Wir möchten gerne auf eine Umfrage im Rahmen des Qualifizierungsprogramms ventUS aufmerksam machen. Das Programm ventUS unterstützt Gründungsvorhaben an der Universität Siegen mit einem eigenen Programm. Das Ziel dabei ist es, die Gründungskultur an der Universität sowie in der Region weiter zu stärken. Aktuell läuft eine Studie zur Gründungskultur an der Universität Siegen, mit deren Ergebnissen die Weiterentwicklung der Gründungskultur an der Universität Siegen sowie in der Region vorangetrieben werden kann. Mehr zur Studie und Teilnahme weiter unten!

Das ventUS-Programm hilft dabei:

  • Kernkompetenzen zum Thema „Unternehmerisches Denken und Handeln“ aufzubauen
  • ein eigenes Büro oder ein Start-Up zu gründen
  • ein selbstentwickeltes Industrieprodukt zu vermarkten
  • ein Social-Startup Haupt- oder Nebenberuflich zu gründen
  • eine Idee für die Selbstständigkeit umzusetzen

Das Projekt ventUS bietet individuelle Beratungen, Kurse, Unterstützung bei Stipendienbeantragung und Netzwerkveranstaltungen an. Ziel ist es dabei gemeinsam Ideen und unternehmerische Ansätze Schritt für Schritt in die Realität zu überführen.

Für das Projekt zum Gründungsvorhaben ist eure Meinung wichtig:

Der Onlinefragebogen kann in 15min ausgefüllt werden.
Link zum Fragebogen: https://umfragen.zimt.uni-siegen.de/index.php/461862?lang=de
Unter allen Teilnehmenden werden als Dankeschön regionale und überregionale Gutscheine verlost.

Für wen ist das Thema Gründung überhaupt relevant?

Die Vermittlung „Unternehmerischen Denkens und Handelns“ steht bei ventUS im Vordergrund. Die hier zu erwerbenden Fähigkeiten spielen nicht nur bei der eigenen Unternehmensgründung, sondern in allen Berufsgruppen und in zukünftigen Jobs eine immer größere Rolle.
Auf der Website gibt es noch mehr Info über das Projekt: www.ventus-siegen.de

Anfertigung eines Prototypen für eine Biegemaschine (Masterarbeit Maschinenbau)

Im Rahmen meiner Masterarbeit am Lehrstuhl für Mikro- und Nanoanalytik in Kooperation mit dem Lehrstuhl für Umformtechnik an der Universität Siegen habe ich eine Biegemaschine für plastische Umformungen im Rasterelektronenmikroskop entwickelt und anschließend in Betrieb genommen.

Mit der Biegemaschine sollen Dreipunktbiegeversuche für die Untersuchung der Rissentstehung von Biegeproben durchgeführt werden um Werkstoffe bei der Biegeumformung besser ausnutzen zu können. Umformprozesse werden bei der Herstellung von Produkten vieler Bereiche des täglichen Lebens verwendet: Autos, Flugzeuge, Schiffe, Rohrleitungen, Blechumformung und viele mehr.

Für eine genaue Untersuchung der Biegeproben während des Biegeversuchs habe ich die Biegemaschine passend für das Rasterelektronenmikroskop (REM) gebaut. Da in einem Rasterelektronenmikroskop nur wenig Platz zur Verfügung steht musste die Maschine relativ klein und leicht sein – sie passt auf eine Handfläche. Erste Biegeversuche im REM wurden bereits durchgeführt.

Rapid Prototyping

Während der Konstruktionsphase habe ich 3D-Druck als ein Rapid Prototyping-Verfahren eingesetzt. Dieses Verfahren hat gegenüber den spanenden Fertigungsverfahren den Vorteil der schnellen Fertigung von Teilen auf Basis von CAD-Modellen. Der erste Prototypen im Maßstab 1:1 wurde während eines Planungs- und Entwicklungsprojektes, ebenfalls im Rahmen meines Studiums konstruiert und 3D-gedruckt.

Besonders zu Beginn des Projektes war es wichtig, schnell eine gute Vorstellung von den realen Abmessungen der später zu fertigenden Bauteile zu erhalten. Dank der freundlichen Unterstützung des Fab Labs in Person von Fabian Vitt konnten die benötigten Bauteile schnell und problemlos gedruckt werden. Ein weiterer Vorteil der Prototypenfertigung mittels 3D-Druck ist die Möglichkeit der Präsentation der Bauteile bei Besprechungen im Maßstab 1:1. So können sich alle Anwesenden durch die 3D-Ausdrucke ein sehr gutes Bild von Form und Details des später zu fertigenden Bauteils machen. Dies ist bei den sonst oft verwendeten ausgedruckten Konstruktionszeichnungen weniger gut möglich. Das 3D-Prototyping kann zu neuen Anpassungsideen führen und das Erkennen nötiger Optimierungen erleichtern.

Ein kurzes Animationsvideo des Biegeprozesses:
https://lmn.mb.uni-siegen.de/in-situ-em/

Ein Kinderbuch, oder: Plastik sparen, 3D-Drucke neu starten

Während des Sommersemester 2020 gab es im Fab Lab einen Drucker, der konstant zum Testen abbestellt war. Der Drucker mit dem Namen “Hades” hatte als Auftrag für ein Kinderbuch als Versuchsobjekt zu dienen. Doch was hat ein Kinderbuch mit hochexperimentellen, Plastik spaarenden Techniken zu tun? Holen wir etwas aus.

Anfang dieses Sommersemesters, beschloss ich, ein Kinderbuch für 3D-Drucker zu entwickeln. Gemeinsam mit meinem Kommilitonen C. Ajiboye wurde daraus ein Handbuch das auf der einen Seite eine Geschichte erzählt, eine von Ursa, einem Mädchen, das den 3D-Druck durch “Learning By Doing” erforscht. Auf der anderen Seite standen dann jeweils Erklärungen wie Probleme die Ursa findet und welche Lösungsansätze sie dafür jeweils nennt.
Doch die letzte Seite war besonders:

In diese Seite war ein WLAN-fähiger (ESP32) Mikrocontroller eingebettet. Dieser konnte über seine Touchpins Berührungen fühlen. Diese Pins habe ich anschließend an Kupferflächen angelötet und unter der Seite versteckt. Einen Laserschnitt später sah man die Kupferflächen durchscheinen.

Dank dieser Flächen war es nun möglich dem ESP32 Befehle zu geben. Und Dank der Octoprint-Server war es dann möglich, den Druckern Befehle zu geben. Ja, ihr lest richtig, dieses kleine Buch hat eine Fernsteuerung für einen 3D-Drucker integriert.

Doch wozu das alles?

Einen 3D-Druck neu zu starten ist keine einfache Aufgabe, bisher gibt es unter sämtlichen Octoprint Plugins kein einziges das sich diese Aufgabe traut. Die Folge davon ist, dass beim Scheitern eines Drucks, welches die Sensoren nicht bemerken viel Zeit, manchmal Tage und auch bis zu kiloweise Plastik verloren gehen. Mit diesem Buch sollte das verhindert werden.

Ein Buch hat viele Vorteile: es ist schnell zur Hand, liegt oft da, wo man es haben möchte und die Software ändert sich nicht viel. Auch ist es leichter als ein Laptop und damit handlicher in der Bedienung. Noch dazu muss man es nicht hochfahren oder vorkonfigurieren. Das Interface ist einfach da.

Aber wie startet man jetzt mit einem Buch einen Druck neu?

Ein 3D-Druck ist gespeichert in Maschinencode. Dieser “Code” wird Zeile für Zeile geschrieben und nachher Zeile für Zeile ausgeführt. Also stellt eine Gruppe von Zeilen eine Schicht dar, denn ein 3D-Druck wird Schicht für Schicht ausgeführt. Scheitert nun ein 3D-Druck an einer Stelle könnte man die Befehle ab dieser Stelle erneut ausführen lassen. In der Datei, wie auch im realen Druck definiert sich dafür eine exakte Höhe. Diese Höhe könnte man zwar messen, doch weder mit dem Auge noch mit einem Lineal findet man diese Höhe genau. Mit dem 3D-Drucker selbst hingegen kann man die Höhe genau finden. Wie beim Kalibrieren alter 3D-Drucke kann man nun mit einem Stück Papier und der Spitze auf unter 0,1mm genau feststellen,wo ein Druck gescheitert ist. Man fährt also mit dem Buch in der Hand die Düse exakt über den Druck, fährt sie ganz langsam herunter und versucht mit einem dazwischengelegten Papier zu ertasten, ab wann die Düse den Druck berührt.

Der Drucker weiß dann, wenn er noch referenziert ist genau wo sich diese Düse befindet. Anhand dieser Höhe wird dann der Code aufgeteilt, die nötigen Initialschritte werden ausgeführt und dann druckt der Drucker wieder als hätte er nie aufgehört.

Ich will das auch

Nach diesem Semester habe ich nun die Zeit gefunden dieses Projekt als Plugin für Octoprint zu entwickeln. So braucht man kein eigenes Buch und kann es im Webinterface ausprobieren. Doch VORSICHT! Dieses Plugin ist hochgradig experimentell und hat auch schon einmal für die Beschädigung eines 3D-Druckers gesorgt. Ich übernehme keine Garantien oder Verantwortung für zukünftige Schäden und rate dazu immer mit der Hand über dem Notschalter zu schweben bis die erste Ebene wieder druckt und man sicher ist dass der Drucker an der richtigen Zeile arbeitet.

Euer Gerrit.

Ein Koffer voll Herz

Am Anfang steht eine Geschichte. Eine Aufarbeitung von Gefühl, in Worte gefasst und in die Welt entlassen. „Du dunkles Herz“ von Tobias Gruseck kommt als ansprechendes rotes Heftchen daher und ist eine Geschichte über einen Koffer voll Geld, der Herzen verdunkelt. Doch bei der Promotion von Literatur kommt es auf mehr an, als auf den Inhalt des Textes. Ein Mythos drumherum ist gut, vielleicht ein exzentrischer Autor, ein Skandal. Oder ein Koffer, darin: Herzen. Berührt man eines der Herzen, oder das Eichenblatt daneben, hört man plötzlich Stimmen. Textpassagen, die zum berührten Gegenstand passen, ertönen sanft und wunderbar vorgetragen aus dem Koffer und machen Lust auf die Geschichte.

Multimedial und mit Liebe zum Detail wird hier eine Geschichte erzählt

Jenny und Simon haben sich der Präsentation des Werkes angenommen und den Koffer gebaut. Darin verkabelt ist ein Touch Board von Bare Conductive®, das über leitendes Garn mit Dingen verbunden ist, die in der Geschichte von Bedeutung und teilweise im 3D-Druck entstanden sind. Berührt man den Faden, schließt man den Stromkreis und die auf dem Chip gespeicherten und zuvor virtuos eingesprochenen Textpassagen werden abgespielt.

Literatur als haptisches Erlebnis

Vorgestellt wurde das alles zuerst in Bad Säckingen bei „Kunst trifft Handwerk“, einer jährlichen Outdoorveranstaltung am malerischen Trompeterschlößchen, dort, wo Deutschland und die Schweiz Touristenströme bündelten, bevor die Pandemie einzog. Der Titel der Veranstaltung passt auch hervorragend zu diesem haptischen Projekt, das literarischen Erguss mit begabter Tüftelei verbindet. Anzuschauen aktuell im Fab Lab Siegen.

Projekt: 3D-Copy-Shop Ein Holzmodell wurde von einem Gipsgesichtsabdruck erstellt

Ein Beitrag von Eri

  • Aus einer Gipsgesichtsmaske wurde eine Fotoserie erstellt.
  • Eine Punktwolke aus der Fotoserie wurde mit Linux/Colmap erstellt.
  • Die Punkte wurden bereinigt und aufbereitet mit Meshlab
  • Die Fräsbahnen wurde mit Pycam generiert.
  • Die Fräsbahndateien wurden mit einem eigenentwickelten Tool


vereinfacht, sodass der GCode mit der Fablab-CNC-Software sowie NCcad lauffähig sind.

Face1_Punkte
  • Das Werkstück: ein 1 1⁄2 Jahre altes, getrocknetes Stirnholzstück, vorgebohrt zum auf-„spaxen“ auf die Opferplatte.
  • Fräser: 6 mm Zylinder für das „Schruppen“ sowie 6 mm Kugelkopf für das „Schlichten“
Face2_Tools
Face3

Zum Herstellungsvorgang

Der Vorschub zum Fräsen konnte deutlich erhöht werden. Beim Erstellen wurde die Fräserlänge nicht ausreichend beachtet. So kam es zu dem Spruch des Tages: „Eine Zustellung geht noch“. Bevor es zu Kollisionen kam, wurde abgebrochen. Nach dem Neumodellieren und x-fachen Schlichtdurchgang (Proxxon) entstand Folgendes:

Face4
Face5
Face7

Dieses Projekt entstand durch freundliche Unterstützung der Uni Siegen. Vielen Dank dafür, insbesondere Daniel für seine Mitarbeit und Helga für Textentwurf und Textgestaltung.

Anmerkung:
Vor Ort ist nur ein sehr langsames Linux Notebook (Ubu 19.04) verfügbar. (evtl. mit SSD schneller o. CloudComputing ??)
Netzwerkzugang für Updates geplant.
Freitagsnachmittags ist für solche Projekte mit Publikumsverkehr und die eingeschränkte Zeit der MitarbeiterInnen, erschwerend und nicht so gut geeignet.
Weitere Spaxschrauben fehlen oder sind nicht gefunden worden.
Die Fräser Auswahl ist eingeschränkt.
Ungelöst : Rattermarken.

Reparatur einer sowjetischen Handbohrmaschine

Vorgeschichte

Mein Vater hat das Ding irgendwann auf dem Trödelmarkt gekauft. Der Preis von 5 Rubeln (Ц. 5Р.) ist im Griff eingearbeitet, weil es in der Sowjetunion damals die Planwirtschaft gab und man in dem großen ganzen Land eine Packung Butter für den gleichen Preis bekam.

Problem

Die Bohrmaschine tat immer ihren Dienst. Sie ist besonders für kleine Arbeiten sehr gut geeignet und man kann das Drehmoment schön manuell dosieren. Nur irgendwann blieb der Bohrer irgendwo stecken und mein Vater hat zu viel Moment auf das große Kegelrad ausgeübt, bis ein paar Kunststoffzähne abscherten und das Ding damit unbrauchbar wurde. Das alte Kegelrad bestand aus zwei Teilen: Die Vorderseite mit den Zähnen bestand aus einem Kunststoffguss und die Rückseite war aus irgendeinem Metall, welches irgendwie mit dem Kunststoff verbunden war (leider kein Foto). Es musste also ein neues Kegelrad her.

Lösung

Zunächst mussten die Zähne des Kegelrades gezählt werden. Es sind 60 Zähne. Das getriebene Kegelrad hat 15 Zähne, so dass es eine Übersetzung von 1:4 gibt. Außerdem mussten alle Abmessungen, wie die Höhe der Zähne, ihre Breite und der Bohrungsdurchmesser des Kegelrades mit einem Messschieber gemessen werden. Das Problem: Die Zähne sind nicht einfach gerade angeordnet und ihr „Brennpunkt“ befindet sich irgendwo in der Luft. Außerdem sind sie am äußersten Durchmesser breiter als am inneren Durchmesser des Kegelrades. Die Geometrie hat es also in sich und man kann das Ding nicht einfach eben mal mit einem CAD-Programm nachbauen, wenn man kein Profi ist.
Was tun? Zum Glück bin ich zufällig auf eine Solidworks-Anleitung im Internet gestoßen. Dort wird gezeigt, wie man mit Hilfe von der Konstruktionsbibliothek von Solidworks (SW) konfigurierbare Normteile herstellen kann. Und das hat gut funktioniert!

Vorgehensweise

Solidworks öffnen, irgendeine Baugruppe öffnen und alle Teile rausschmeißen. Anders hat es bei mir irgendwie nicht geklappt. Dann auf der rechten Bildschirmseite die Konstruktionsbibliothek öffnen und sich durch den Baum hangeln. Toolbox, ISO, Kraftübertragung, Zahnräder, Gradkegelrad (treibend).

Solidworks

Bei mir hat die ISO-Norm gut mit meinem sowjetischen Teil übereingestimmt. Dann muss das „Gradkegelrad (treibend)“ per Drag & Drop in das Baugruppenfenster gezogen werden. Jetzt öffnet sich links der Dialog „Komponente konfigurieren“ Es können der Modul, die Zähnezahl, der Eingriffswinkel usw. eingestellt werden. Hier muss man experimentieren, das Kegelrad mit dem grünen Häkchen immer wieder bauen lassen und nachmessen. (Tipp: Wenn man auf eine Bauteilkante klickt, steht in der unteren Infoleiste von SW praktischerweise direkt die gemessene Länge.)

SolidWorks-2

Man kann jedoch nicht alle Abmessungen und Geometrieeigenschaften im Konfigurator festlegen. Und hier wird es etwas knifflig. Wenn die Zahngeometrie von dem erstellten Rohling soweit passt, muss der Rest nun manuell dazugebaut werden. Ich habe die Funktion „Aufsatz/Basis rotiert“ benutzt, um eine erstellte Skizze als Rotationskörper an den Rohling zu bauen (siehe Screenshot). Auch hier musste ich das alte Kegelrad immer wieder vermessen.

SolidWorks-3

Sobald man mit dem Bauteil zufrieden ist, muss es für den 3D-Druck ins *.STL Format exportiert werden. Und schon kann es losgehen zum Fab Lab Siegen! Hier hat mir Fabian unter die Arme gegriffen, mir die 3D-Drucker gezeigt und den Druck gestartet. Vielen Dank! 😊

Ergebnis

Der erste Druck verlief erfolglos (is’ ja klar). Beim 3D-Druck fallen z. B. die Bohrungen im Vergleich zum Modell immer etwas kleiner aus. Auch waren die Zähne zu klein, so dass sie nicht tief genug in die gegenüberliegenden Zähne eingreifen konnten. Auch diese Zähne sind bei ersten Versuchen abgeschert. Außerdem war die Halterung für die Kurbel etwas zu dünn geraten und ist deshalb abgebrochen.

Zahnräder gedruckt

Bohrmaschine-offen

Jetzt konnte man aber das gedruckte Kegelrad vermessen und die Abmessungen in SW verbessern und schließlich einen zweiten Versuch starten. Beim zweiten Mal lief es jedoch besser als erwartet und das Kegelrad ließ sich wunderbar einbauen. Die Handbohrmaschine läuft sehr geschmeidig und falls in ein paar Jahren irgendwelche Probleme auftreten sollten, drucke ich das Kegelrad eben nochmal aus. 😉

Bohrmaschine-zusammengebaut-1

Bohrmaschine-zusammengebaut-2

Kooperationsprojekt FAB101

Wir sind am 1. März 2017 mit unserem Kooperationsprojekt FAB101 in die Startlöcher gegangen, in wir uns mit dem Potenzial digitaler Fabrikationsinfrastrukturen (Fab Labs) für die interdisziplinäre Hochschullehre der Zukunft beschäftigen werden. Wir freuen uns sehr über die Förderung des Bundesministeriums für Bildung und Forschung (BMBF) und natürlich auf die Zusammenarbeit mit der RWTH Aachen, der Universität Bremen und der Folkwang Universität.

Über das Projekt

Im Projekt sollen empirische Studien zum Stand der Wissenschaft und Praxis zu Fab Labs in der Hochschullehre durchgeführt werden, die anschließend in exemplarische Konzepte und Formate für verschiedenste Studiengänge überführt werden können. Die Projektpartner arbeiten hierbei sowohl standortbezogen, als auch hochschulübergreifend. Das Erarbeiten von Standards, Empfehlungen und Erfahrungswissen zur Organisation und Governance von Fab Labs als breit zugängliche, neuartige Infrastruktur an Hochschulen hat ebenfalls hohe Priorität.

170721_fab101_project-overview

Ausschnitt Projektposter FAB101

Die Projektpartner

Die RWTH hat im Jahre 2009 das deutschlandweit erste Fab Lab gegründet. Ihr Schwerpunkt liegt in der Mensch-Technik-Interaktion. Prof. Dr. Jan Borchers von der Media Computing Group ist Ansprechpartner dieses Standortes.

Die Universität in Bremen legt ihren Fokus auf Didaktik und wird in diesem Projekt von Prof. Dr. Heidi Schelhowe, Leiterin der Arbeitsgruppe dimeb, repräsentiert.

Die Folkwang Universität, vertreten durch Prof. Stefan Neudecker (Leiter der Professur “Design by Technology”) bereichert uns mit ihrer Erfahrung mit werkstattbasierter Lehre aus der Perspektive von Kunsthochschulen.

Unsere Universität in Siegen sieht ihre Stärken in der Kooperationsforschung. Prof. Dr. Volkmar Pipek vom Lehrstuhl Computerunterstützte Gruppenarbeit und Soziale Medien leitet den Verbund.

Da an allen vier Standorten bestehende Fab Labs zur Verfügung stehen, die jeweiligen Schwerpunkte der beteiligten Forschungsgruppe aber variieren, wird in einem vergleichbaren und dennoch breit aufgestellten Verbund praxisnah geforscht.

fab101-verbund

“Garbage · Environment · Design” – mit Kunst gegen Wegwerfen

Im Rahmen des Kooperationsprojektes „Garbage · Environment · Design“ reisten Sarah und Marios, zwei unserer Studierenden, vergangenes Jahr im September nach Palästina. Das zweiwöchige Projekt, das vom Goethe-Institut in Ramallah organisiert wurde, sollte der dort herrschenden Wegwerfkultur im öffentlichen Raum aus Europa entgegenwirken und eine Brücke zwischen Konsum und Kunst bilden. Dazu sollten Ansätze des “Upcycling” genutzt werden, die aus Altem wieder Neues machen.

Jeweils zwei Studierende aus Deutschland, Frankreich und Palästina waren an dem interkulturellen Projekt beteiligt und haben in einem Workshop die Ausstellung entworfen und passende Exponate gebaut. Im Rahmen des zehntägigen Aufenthalts vor Ort sollten durch Upcycling kollaborativ Prototypen aus Alltagsgegenständen hergestellt werden, um auf alltägliche Umweltprobleme aufmerksam zu machen. Hierbei profitierte das Projekt vom Input von anderen palästinensischen und internationalen ExpertInnen aus den Bereichen Design, Kunst, Erziehung und Architektur.

Das Material wie Paletten, Yton Steine und Plastik Flaschen wurden direkt von der Straße aufgelesen und waren nur ein Teil unzähliger genutzter Ressourcen.
Ein Beispiel für die effektive Materialnutzung sind die hängenden Gärten bestehend aus zwei grünen Flaschenwänden mit Minze bepflanzt, die zur Begrüßung der Ausstellungsbesucher am Haupteingang des Goethe Instituts aufgebaut wurden. Die Ergebnisse wurden im deutsch-französischen Kulturraum zur interkulturellen Diskussion und für Experimente ausgestellt.


Zusätzlich fand während des Besuches der Studierenden in Palästina der Aktionstag „Kunst und Konsum“ statt, bei dem die Bewohner aktiv und gemeinsam ein Stück Land von Müll und Unrat befreien sollten.

Ziel des Projektes war es, Bürgerrechte, aber vor allem auch Bürgerpflichten zu vermitteln und speziell Jugendliche vor Ort zu mobilisieren, zivilgesellschaftliche Verantwortung zu übernehmen. Das Projekt wurde unter anderem in Kooperation mit Vecbox, dem ersten palästinensischen Makerspace durchgeführt, die die lokale Expertise mitbrachten.

Sarah und Marios konnten bereits auf Erfahrungen im Westjordanland, die sie im April letzten Jahres im Rahmen des Kooperations- und Austauschprojektes Yallah vor Ort sowie durch das Projekt come_IN sammeln konnten, zurückgreifen.

Zeit.Raum – Siegen erlebbar machen

Das interdisziplinäre Forschungsprojekt ZEIT.RAUM Siegen wird in enger Zusammenarbeit mit BürgerInnen durchgeführt und zielt darauf ab, die Stadt Siegen in ihrem Raum und ihrer Geschichte mit innovativer Technik gemeinschaftlich erleb- und begreifbar zu machen. ZEIT.RAUM soll die Zusammenarbeit und den Austausch von allen Interessierten – von WissenschaftlerInnen, Studierenden bis hin zu SchülerInnen und Hobby-HistorikerInnen – über die Geschichte, Gegenwart und Zukunft der Stadt ermöglichen. So werden neue Formen der Wissensgenerierung und -vermittlung eröffnet.

Das Projekt besteht aus zwei miteinander verknüpften Bestandteilen: Einem anfassbaren Stadtmodell in Tischgröße zur Interaktion, das mit Hilfe verschiedener digitaler Fabrikationsverfahren hergestellt und im Siegerlandmuseum ausgestellt wird. Durch verbaute Sensoren wird eine interaktiv erfahrbare Auseinandersetzung mit der Stadt und ihrer Geschichte ermöglicht, die auch individuelle Erinnerungen anregt. Zweites zentrales Element des Projektes ist das Stadtwiki, eine gemeinschaftliche, digitale Plattform zur Siegener Stadtgeschichte, die von und für BürgerInnen entwickelt wird. Neben der Sammlung von Informationen dient sie auch als Forum, um über die Bedeutung der gesammelten Daten zu diskutieren. Es werden Erinnerungsorte identifiziert, aufbereitet und reflektiert. Alle Bestandteile des Projektes sollen so gestaltet werden, so dass sie für alle Interessierten gut zugänglich, verständlich und leicht bedienbar sind.

Einer der ersten Probedrucke für das interaktive Stadtmodell

Die Rolle des Fab Labs

Auch wir vom Fab Lab sind auf mehreren Ebenen an dem Projekt beteiligt, insbesondere an der Erstellung des interaktiven Stadtmodells. Als Datenbasis dafür dient das bereits bestehende, virtuelle 3D-Modell der Stadt Siegen, das von Prof. Jarosch erstellt wurde. Die Topografie wird im Lab aus einer großen Platte gefräst. Welches Material sich dafür am Besten eignet wird aktuell getestet. Die darauf installierte originalgetreue Bebauung der Stadt hingegen wird mit den 3D-Druckern im Fab Lab gedruckt. Auch die später im Stadtmodell zu verbauende, möglichst nutzerfreundliche Sensorik wird bei uns im Lab entwickelt. In das Projekt sind auch mehrere Studierende involviert, die im Rahmen von Qualifikationsarbeiten an einzelnen Bestandteilen des Projektes arbeiten.

Papierprototyp für das Interaktionskonzept des Stadtmodells

Aktuelle Entwicklungen

Aktuell arbeiten Studierende an der Gestaltung des Interaktionskonzeptes und haben dafür unter anderem einen Papierprototypen des Stadtmodells erstellt. Ebenso konnten bereits erste Protoypen für das Stadtmodell erfolgreich gedruckt und die Sensorik ausführlich getestet werden. Um später die Sensorik direkt in das Stadtmodell verbauen zu können, wird das Modell mit leitfähigem Filament gedruckt. Im Rahmen dieser ersten technischen Arbeiten wurde auch ein EntwicklerInnenboard (siehe Titelbild) erstellt, auf dem Folgendes verbaut wurde: Arduino-Leonardo, Raspberry Pi 2, CAP1188-Breakout, 3D-gedruckter Touchsensor und 3D-gedruckte Matrix.

Test der Sensorik, die in dem Stadtmodell verbaut werden soll

Während eines unser letzten Projekttreffen wurde bereits ein erstes Modell der Nikolaikirche – das wohl bekannteste Wahrzeichen der Stadt Siegen – gedruckt. Ganze drei Stunden benötigte unser Ultimaker für das Modell im Maßstab 1:9000.
Hier seht ihr das Ergebnis:

.

Weitere Projektpartner

Neben dem Fab Lab sind zudem seitens der Universität Siegen der Lehrstuhl für Didaktik der Geschichte unter Leitung von Prof. Dr. Bärbel Kuhn, der Lehrstuhl für Praktische Geodäsie und Geoinformation unter Leitung von Prof. Dr. Monika Jarosch und der Lehrstuhl für Computerunterstützte Gruppenarbeit, Leitung Prof. Dr. Volkmar Pipek involviert. Die Realisierung wurde möglich durch die Unterstützung der Universität sowie der Freunde und Förderer des Siegerlandmuseums, die in dem Projekt eine Investion in die Zukunft des Siegerlandmuseums sehen. Das Siegerlandmuseum soll durch ZEIT.RAUM in seiner Rolle für kooperative und inklusive historische Arbeit in der und mit der Region gestärkt werden.

Über weitere Entwicklungen des Projektes im und rund um das Lab halten wir euch natürlich auf dem Laufenden.