User-Story: Realization of a Planning and Development Project at the Fab Lab

Four students realized their planning and development project in the Fab Lab as part of their studies. This type of project is offered as a course as part of the Mechanical Engineering Program of Faculty IV at the University of Siegen. In this course, students work in groups on innovative technologies and concepts, which they present in a plenary session and document in a final report.

The goal of this project was to design a test rig for rubber bearing measurements in the chassis that can test all six degrees of freedom, since the current test rig of the Institute of Automotive Lightweight Design at the University of Siegen is not capable of doing so. The students focused on measuring U-bearings and RU-bearings.

In order to be able to realize the concept they developed, they needed bearing supports that would hold the various bearings when subjected to the test forces. To do this, they developed a model for a U-bearing support and an RU-bearing support and then printed them three-dimensionally using one of our Prusa printers in the Fab Lab.

The respective bearings can be attached to the support with the help of four screws. In order to be able to screw the bearing supports to, e.g., a base or adapter, they have eight holes on each side. This allows them to withstand any load, whether translational or rotational. Both bearing supports can be mounted to the required motor – linear lifting cylinder or three-phase motor – depending on the spatial direction to be measured, and can be screwed to necessary aids such as rails, rollers, an adapter or a rotatably mounted table.

On the drawing you can see an exemplary test rig. This shows how the printed bearing supports, developed by the students, can be used in a translational measurement with the linear stroke cylinder and in a rotational measurement with a three-phase motor.

Test rig for the translational measurement (linear stroke cylinder) and the rotational measurement (three-phase motor)

We are happy that the Fab Lab can support students in their studies. So, if you also have a project in mind – whether as part of your studies or personal – just come by during our opening hours!

Offene Uni

Am 14. Mai waren wir mit einem Stand bei der Offenen Uni am Unteren Schloss vertreten. Mit im Gepäck hatten wir ein paar 3D-Drucker, unseren Roboterarm, sowie unsere Augmented Reality Sandbox.

Über den Unteren Schloßplatz verteilt, waren jede Menge Einrichtungen und Studiengänge und Forschungsprojekte vertreten, um sich vorzustellen. Es hat uns sehr gefreut das viele von euch uns besucht haben. Klar, das Wetter war schön und es gab‘ ja auch einen Eiscreme-Truck direkt neben unserem Zelt.

Am Stand konnten Besucher:innen lernen mit dem 3D-Drucker umzugehen, es gab‘ viele Interessierte, die schließlich mit eigenen gedruckten Teilen nach Hause gehen konnten. Unser Roboterarm, hat munter den ganzen Tag gezeigt, wie man Objekte 3D scannen und digitalisieren kann (um sie dann beispielsweise mit den 3D Drucker zu replizieren). Die Augmented Reality Sandbox kam besonders gut an. Man kann mit dem Sand eine Topografie einer Landkarte interaktiv verändern, Berge und Täler bauen, um dann anschließend mit einer Wasser- und Regen-Simulation den Fluss des Wassers auf der Karte zu beobachten. Eine tolle Möglichkeit, etwas über Topografie und Augmented Reality zu lernen.

Production of a prototype for a bending machine (Master thesis mechanical engineering)

As part of my master’s thesis at the Chair of Micro- and Nanoanalytics in cooperation with the Chair of Forming Technology at the University of Siegen, I developed and subsequently commissioned a bending machine for plastic forming in the scanning electron microscope.

The bending machine will be used to perform three-point bending tests to investigate the crack initiation of bent specimens in order to better utilize materials in bending forming. Forming processes are used in the manufacture of products in many areas of daily life: Cars, aircraft, ships, piping, sheet metal forming and many more.

For a detailed examination of the bending specimens during the bending test, I built the bending machine to fit the scanning electron microscope (SEM). Since there is little space available in a scanning electron microscope, the machine had to be relatively small and light – it fits on the palm of a hand. Initial bending tests in the SEM have already been carried out.

Rapid Prototyping

During the design phase, I used 3D printing as a rapid prototyping process. Compared to machining processes, this method has the advantage of fast production of parts based on CAD models. The first 1:1 scale prototype was designed and 3D printed during a planning and development project, also as part of my studies.

Especially at the beginning of the project, it was important to quickly get a good idea of the real dimensions of the components to be manufactured later. Thanks to the friendly support of the Fab Lab in the person of Fabian Vitt, the required components were printed quickly and without any problems. Thanks to the friendly support of the Fab Lab in the person of Fabian Vitt, the required components were printed quickly and without any problems. In this way, all those present can get a very good picture of the shape and details of the component that will later be manufactured through the 3D printouts. This is less possible with the otherwise often used printed construction drawings. 3D prototyping can lead to new fitting ideas and facilitate the identification of necessary optimizations.

A short animation video of the bending process:
https://lmn.mb.uni-siegen.de/in-situ-em/

Visit from Mascat (Oman) to Fab Lab Siegen

On 22 November, we had a visit from a delegation from the German University of Technology (GUTech) in Mascat, Oman with 20 mostly female students of technical disciplines and two teachers.

The delegation was interested in the concept, implementation and benefits of Fab Labs at universities, as we are pursuing in Siegen.
Prof. Dr. Volkmar Pipek, Director of the Fab Lab on this:

“We are very interested in sharing our experiences in setting up and running a Fab Lab and networking with Fab Labs worldwide.”

As you may have noticed, we have several international partnerships, such as the YALLAH exchange with universities in Palestine and Gaza, the Global Innovation Gathering network and Greece Communitere.

Prof. Pipek also emphasised again how important a lab is for exchange, the acquisition of knowledge and also for intercultural understanding. Prof. Pipek continues:

“In addition to implementing vocational qualification pathways, Fab Labs also serve as learning sites for technical skills for the population and can thus make an important contribution to democratising technical knowledge in all countries and cultures.”

There are more than 1700 Fab Labs worldwide. Discussions are currently taking place to support the establishment of a Fab Lab at GUTech in Mascat by the University of Siegen.

Zeit.Raum – Making Siegen come alive

The interdisciplinary research project ZEIT.RAUM Siegen is being carried out in close cooperation with citizens and aims to make the city of Siegen experience and understand its space and history in a collaborative way using innovative technology. ZEIT.RAUM is designed to facilitate collaboration and exchange between all interested parties – from academics and students to schoolchildren and amateur historians – about the city’s history, present and future. This opens up new forms of knowledge generation and transfer.

The project consists of two interlinked components: A touchable table-sized city model for interaction, produced using various digital fabrication processes and exhibited in the Siegerland Museum. Built-in sensors enable an interactive experience of the city and its history, which also stimulates individual memories. The second central element of the project is the Stadtwiki, a collaborative digital platform on Siegen’s city history, which is being developed by and for citizens. In addition to collecting information, it also serves as a forum to discuss the meaning of the data collected. Places of remembrance are identified, processed and reflected upon. All components of the project should be designed in such a way that they are easily accessible, understandable and easy to use for all interested parties.

One of the first test prints for the interactive city model

The role of the Fab Lab

We at Fab Lab are also involved in the project on several levels, especially in the creation of the interactive city model. The existing virtual 3D model of the city of Siegen, which was created by Prof. Jarosch, serves as the data basis for this. The topography is milled out of a large plate in the Lab. Which material is best suited for this is currently being tested. The true-to-the-original buildings of the city installed on it, on the other hand, are printed with the 3D printers in the Fab Lab. The sensor technology that will later be installed in the city model, which should be as user-friendly as possible, is also being developed in our lab. Several students are also involved in the project, working on individual components of the project within the framework of qualification theses.

Paper prototype for the interaction concept of the city model

Current developments

Currently, students are working on the design of the interaction concept and have, among other things, created a paper prototype of the city model. Likewise, the first prototypes for the city model have already been successfully printed and the sensor technology extensively tested. The model is printed with conductive filament so that the sensors can later be built directly into the city model. As part of this initial technical work, a developer board (see cover picture) was also created on which the following were installed: Arduino-Leonardo, Raspberry Pi 2, CAP1188-Breakout, 3D-printed touch sensor and 3D-printed matrix.

Test of the sensor technology to be installed in the city model

During one of our last project meetings, a first model of the Nikolaikirche – probably the best known landmark of the city of Siegen – was already printed. It took our Ultimaker a whole three hours to make the 1:9000 scale model.
Here you can see the result:

.

Other project partners

In addition to the Fab Lab, the University of Siegen also involves the Chair of Didactics of History headed by Prof. Dr. Bärbel Kuhn, the Chair of Practical Geodesy and Geoinformation headed by Prof. Dr. Monika Jarosch and the Chair of Computer Supported Group Work headed by Prof. Dr. Volkmar Pipek. The realisation was made possible by the support of the university and the Friends and Patrons of the Siegerlandmuseum, who see the project as an investment in the future of the Siegerlandmuseum. The Siegerland Museum is to be strengthened by ZEIT.RAUM in its role for cooperative and inclusive historical work in and with the region.

We will of course keep you informed about further developments of the project in and around the Lab.

The origin of Fab Lab Siegen

Efforts to establish a Fab Lab at the University of Siegen are not entirely new. On a smaller scale, similar activities have already been carried out at Faculty III:

The HCI lab there also provides infrastructure (e.g. 3d printers) to some extent. Even though the HCI Lab is also quite open in principle, there are no Open Lab Days here, the equipment is not extensive, the area is very small and, in addition, the room is often needed for chair activities and can then of course not be used by everyone. However, we explicitly mention the HCI-Lab here, as its operation has already created quite a bit of expertise, especially in areas such as 3d printing or also Arduino. The Fab Lab Siegen and the HCI-Lab will therefore collaborate closely (e.g. for courses and workshops) and possibly consolidate hardware and equipment in some cases.