Tensile Test

If you’ve always wondered what a plastic component from a 3D printer can withstand, you’ve come to the right place. As part of the SmaP research project, we teamed up with the UTS Chair of Forming Technology and literally put our prints to the test (yes, well, maybe more like clamped).

The Attempt

The test we have carried out is the tensile test according to DIN EN ISO 527-1. This DIN standard contains the basic information about the exact execution of the tensile test for plastics.

The Sample

The specimen was dimensioned according to DIN EN ISO 527-2. This standard specifically defines the test conditions for molding and extrusion compounds. In our case, it is an extrusion compound, which is due to the manufacturing process (FDM 3D printers like the ones used extrude liquid plastic into an extrusion compound). Our specimen is a flat specimen of type 1A, this has a rectangular shape with so-called heads for clamping wedges. The width is 10 mm and a thickness of 5 mm.

Test Execution

3 different materials from 2 different printers were tested. 5 samples each were made. Samples of polylactide (PLA) and polyethylene terephthalate (PETG) were printed on one of our Prusa i3 MK3s printers. Furthermore, samples of onyx were produced on the Markforged MarkTwo. Onyx is a nylon with portions of carbon short fibers. For the test, a material sample in standardized form is inserted into a tensile testing machine. This machine stretches the specimen during the test until it breaks or elongation occurs without breakage (looks then like an elongated chewing gum). The specimen is stretched at a standardized speed (1 mm/min). The tensile testing machine continuously pulls the specimen apart during the test. The force that the specimen opposes this imposed strain is meanwhile recorded via the strain. The values in the evaluation can then be determined from the measured data. In the video below, you can see the experimental procedure and the tearing of a sample.

Results

The evaluation contains all essential information about the test and its boundary conditions, as well as a stress-strain diagram, the images of the specimens, and the data on material properties obtained from the test.

PLA

In the stress/strain diagrams of PLA, the range of elastic deformation can be seen in the range of about 0 – 1.8 %, which then stops abruptly when the tensile strength is reached, and changes to plastic deformation. From the area of plastic deformation, approximately between 1.8 and 2%, the quite pronounced part of the necking begins. The material still allows about 1.5% elongation until it finally breaks.

PETG

With PETG, the result cannot be reconstructed quite as nicely as with PLA. Sample PETG_P1, the upper outlier in the diagram, changes from the elastic to the plastic range at about 55 MPa, which then leads to necking at 60 MPa and ends in fracture of the sample at an elongation of 5.1%. The four other specimens behave similarly for the most part and also have only a small area of plastic deformation and pronounced area of necking. Compared to PLA, the elastic range of PETG is more pronounced.

Onyx

The onyx material also has a continuous transition from elastic to plastic deformation, although the region of elastic deformation is difficult to discern. Apparently, this ends at about between 8 and 10 MPa and then turns into a very pronounced part of plastic deformation, which subsequently leads to fracture with only slight necking.

Comparison

In this comparison, all evaluated specimens are summarized in a stress-strain diagram.

Here it can be seen that the specimens made of onyx (black) allow almost twice as much strain until fracture occurs, compared to the specimens made of PETG (red). Compared to the other two materials, the samples made of PLA allow even less elongation and are all already torn at an elongation of ε = 3.4 – 3.8 %. The comparison diagram also shows how much stress the materials can withstand, with PLA being the best performer except for the one outlier (PETG_P1). This is followed by PETG and in third place by the onyx material. Comparing all three materials with each other, it can be seen that PLA allows the least elongation in its elastic deformation range, but also quickly leads to breakage of the specimen after exceeding this range. Therefore, it can be said that PLA is certainly the material with the most brittle behavior. If you now want to realize one of your projects, you can follow these results to some extent, at least as far as tension and elongation are concerned, although the three materials naturally have other strengths and weaknesses.

Retr0brighting – Brighten up old gaming hardware

A contribution by Florian Jasche

In the last two days I have been working on retr0bright and I don’t want to withhold my experiences from you. I’m currently retrofitting this old Playstation 2 controller and was actually going to limit myself to the inside, but now I’ve decided to give the controller a bit of a facelift on the outside as well.

upload_b2f3596b2675c979521664a78a4855e3

However, the primary goal was not to make the controller look nicer again, but to simply have retr0bright done. So I looked around in this internet how retr0bright works and what you need for it. You can find many different recipes and procedures. All involve hydrogen peroxide (H2O2) solution 👨🔬 and (UV) light. I was inspired by this video first and decided on the H2O2 and heat variant:

For this I bought a 3% hydrogen peroxide solution. You can get them for a few euros at Müller or Amazon. To test the procedure, I first performed a small test. There were two parts on the controller that had to be replaced due to damage and could therefore be used as a test and reference object. Before the test, I removed the protection from the parts.

For the H2O2 & heat variation, I mixed the H2O2 with tap water in about a 1:2 ratio and heated it to about 60°C in a pot, then let the first part float in the solution for four hours. Even though no additional light source was used in the video, I still decided to shine a lamp into the pot. Since other tutorials keep saying that the best results can be achieved with ultraviolet light or lots of light in general, I took the brightest/intensive lamp I had there. This is a 50W high power LED which is normally used as plant lighting. But I can’t tell you exactly what wavelength comes out ¯_(ツ)_/¯.

upload_d6ea89f738eefc42f97c25fe8b059b08

After four hours, I then took the part out of the solution and could perceive a visible brightening, with which I was satisfied.

upload_aa022cf943e7798ec4102fa8fc4d5514

So in go the next parts. Since I had bought only a small bottle of H2O2 (250ml) and accordingly there was not so much liquid in the pot, I first put in only the front sides of the joysticks, since they are somewhat flatter. Important: the parts should be completely covered. After four more hours, I took out the fronts of the joysticks and compared them to the backs.

I treated the backs using the same process, but I had to improvise a bit because I didn’t have enough of the hydrogen peroxide solution to completely cover the backs. So I decanted the solution into the jar and added some more water and then heated the solution by water bath. This time I couldn’t set up the lamp properly, so I left it out.

After another four hours, I got the parts out. The whitening was much less than the other pieces, so I just let them float in the solution for another three hours. Unfortunately, this did not bring so much.

Black gloves = professional.

Since the actual controller housing is way too big for my pots, I used a different variant here. For large housing parts, the Internet recommends the use of hydrogen peroxide gel. In this process, hydrogen peroxide is mixed with glycerin (among other moisturizing properties) and xanthan gum (E 415, thickening agent). Alternatively, you can use Oxide Cream from the hairdresser: https://www.amazon.de/Cream-Oxide-1000ml-12/dp/B008F5MIL6/ (see reviews).

The procedure here is as follows: The part to be bleached is evenly coated with the gel and then, if possible, wrapped airtight (zip lock bag or cling film) and placed in the sun or under a lamp for about 24 hours. Wrapping is to prevent the gel from drying out too quickly.

upload_6a2d3f4ee5276f8b1e9073fa41e02ed5
upload_cea0d71379ec677d0af0c9ac8aa39ffb
upload_1929a65189b798f6e35f3c994feb8194
upload_1b7521fe5f6bf34fff666f52a63ef6ca

The aluminum foil serves only as protection for the table. Then quickly built a bracket for the lamp 👨🔧.

upload_59af8eaa640979368dba23ab440c088d

After about 24 hours, I then freed the case from the cling film and washed it properly. It has become brighter, but unfortunately not as much as the other parts.

Before
upload_bb673d8e9d3929b620a7bd22c605654c
After
upload_2867fe25b2cb184c0d03dedc2571e2ac
upload_30178c7476c0b892cec23fa7e74ff340

I also put the backs of the joysticks under the lamp overnight. In the morning, the parts looked like this:

upload_0d2785a1dd9d6e15bbc9e34d0ff8acb1
upload_10b5b6e8e491bf4aad1c0da3b93c68c7
upload_150b0af427341439e8d55bb83779df56