Zugversuch

Wer sich schon immer gefragt hat, was ein Kunststoffbauteil aus dem 3D-Drucker aushalten kann, ist hier genau richtig. Wir haben uns, im Rahmen des Forschungsprojekts SmaP mit dem Lehrstuhl für Umformtechnik UTS zusammengetan und unsere Drucke im wahrsten Sinne des Wortes auf den Prüfstand gestellt (ja gut, vielleicht auch eher eingespannt).

Der Versuch

Der Versuch den wir durchgeführt haben ist der Zugversuch nach DIN EN ISO 527-1. Hinter dieser DIN verbergen sich die grundsätzlichen Informationen über die genaue Durchführung des Zugversuchs bei Kunstoffen.

Die Probe

Die Probe wurde nach DIN EN ISO 527-2 dimensioniert. In dieser Norm werden speziell die Prüfbedingungen für Form- und Extrusionsmassen festgelegt. In unserem Fall handelt es sich um eine Extrusionsmasse, was dem Fertigungsverfahren geschuldet ist (FDM-3D-Drucker wie die eingesetzten Drucker extrudieren flüssiges Plastik zu einer Extrusionsmasse). Unsere Probe ist eine Flachprobe vom Typ 1A, diese hat eine rechteckige Form mit sogenannten Köpfen für Spannkeile. Die Breite beträgt 10 mm und eine Dicke von 5 mm.

Versuchsdurchführung

Geprüft wurden 3 verschieden Materialien aus 2 unterschiedlichen Druckern. Es wurden je 5 Proben gefertigt. Auf einem unserer Prusa i3 MK3s-Drucker wurden Proben aus Polylactide (PLA) und aus Polyethylenterephthalat (PETG) gedruckt. Des Weiteren wurde auf dem Markforged MarkTwo Proben aus Onyx hergestellt. Onyx ist ein Nylon mit Anteilen von Carbon-Kurzfasern. Für den Versuch wird eine Materialprobe in genormter Form in eine Zerreißmaschine bzw. Zugprüfmaschine eingesetzt. Diese Maschine zieht die Probe während des Versuches in die Länge, bis sie zerreißt oder eine Dehnung ohne Bruch (sieht dann aus wie ein langgezogener Kaugummi) eintritt. Dabei wird die Probe mit genormter Geschwindigkeit (1 mm/min) gedehnt. Die Zugprüfmaschine zieht die Probe während des Versuchs kontinuierlich auseinander. Die Kraft, die die Probe dieser aufgezwungenen Dehnung entgegensetzt wird währenddessen über die Dehnung aufgezeichnet. Aus den gemessenen Daten lassen sich dann die Werte in der Auswertung bestimmen. Im nachfolgenden Video ist die Versuchsdurchführung und das Zerreißen einer Probe zu sehen.

Auswertung

In der Auswertung sind alle wesentlichen Informationen über den Versuch und seine Randbedingungen enthalten sowie ein Spannungs- Dehnungsdiagramm, die Bilder der Proben sowie die aus dem Versuch ermittelten Daten über die Materialeigenschaften.

PLA

In den Spannungs-/Dehnungsdiagrammen von PLA ist im Bereich von etwa 0 – 1,8 % der Bereich einer elastischen Verformung zu erkennen, die dann beim Erreichen der Zugfestigkeit abrupt aufhört, und in eine plastische Verformung übergeht. Aus dem Bereich der plastischen Verformung, etwa zwischen 1,8 und 2 % beginnt der recht ausgeprägte Teil der Einschnürung. Dabei lässt der Werkstoff noch etwa 1,5 % Dehnung zu bis es dann schlussendlich zum Bruch kommt.

PETG

Beim PETG lässt sich das Ergebnis nicht ganz so schön rekonstruieren wie beim PLA. Die Probe PETG_P1, im Diagramm der obere Ausreißer, wechselt etwa bei 55 MPa aus dem Elastischen in den plastischen Bereich, der dann bei 60 MPa in die Einschnürung führt und bei einer Dehnung von 5,1 % im Bruch der Probe endet. Die vier weiteren Proben verhalten sich größtenteils ähnlich und haben ebenfalls nur einen geringen Bereich der plastischen Verformung und ausgeprägten Bereich der Einschnürung. Im Vergleich zum PLA ist beim PETG der elastische Bereich ausgeprägter.

Onyx

Auch das Onyx-Material hat einen kontinuierlichen Übergang aus der elastischen in die plastische Verformung, wobei der Bereich der elastischen Verformung schwer auszumachen ist. Augenscheinlich endet dieser in etwa zwischen 8 und 10 MPa und geht dann in einen sehr ausgeprägten Teil der plastischen Verformung über, welcher anschließend bei nur geringer Einschnürung zum Bruch führt.

Vergleich

In diesem Vergleich sind in einem Spannungs- Dehnungsdiagramm alle ausgewerteten Proben zusammengefasst.

Hier ist zu sehen, dass die Proben aus Onyx (schwarz) beinahe doppelt so viel Dehnung zulassen bis es zum Bruch kommt, im Vergleich zu den Proben aus PETG (rot). Die Proben aus PLA lassen im Vergleich zu den beiden anderen Materialien noch weniger Dehnung zu und sind alle schon bei einer Dehnung von ε = 3,4 – 3,8 % zerrissen. Des Weiteren ist in dem Vergleichsdiagramm schön zu sehen wie viel Spannung die Werkstoffe aushalten können, dabei schließt PLA bis auf den einen Ausreißer (PETG_P1) am besten ab. Danach steht dann PETG und an dritter Stelle das Onyx-Material. Vergleicht man alle drei Materialien miteinander ist zu sehen, dass das PLA in seinem Bereich der elastischen Verformung am wenigsten Dehnung zulässt dafür aber auch nach dessen Überschreiten schnell zu einem Bruch der Probe führt. Daher kann man bei diesem Versuch sagen das PLA sicherlich der Werkstoff mit dem sprödesten Verhalten ist. Möchte man nun eines seiner Projekte verwirklichen, kann man sich zumindest was die Spannung und Dehnung angeht ein wenig nach diesen Ergebnissen richten, wobei die drei Werkstoffe natürlich noch weitere Stärken und Schwächen besitzen.

Retr0brighting – Aufhellen von alter Gaming-Hardware

Ein Beitrag von Florian Jasche

Ich habe mich in den letzten zwei Tagen mal mit dem Thema retr0bright beschäftigt und möchte euch meine Erfahrungen nicht vorenthalten. Ich retrofitte gerade diesen alten Playstation-2-Controller und wollte mich dabei eigentlich auf das Innenleben begrenzen, aber nun habe ich mich doch dafür entschieden den Controller auch von außen ein bisschen aufzuhübschen.

upload_b2f3596b2675c979521664a78a4855e3

Dabei war aber nicht das primäre Ziel, dass der Controller wieder schöner aussieht, sondern retr0bright einfach mal gemacht zu haben. Also habe ich mich in diesem Internet mal schlau gemacht wie retr0bright funktioniert und was man dafür braucht. Man findet viele unterschiedliche Rezepte und Vorgehensweisen. Alle beinhalten Wasserstoffperoxid(H2O2)-Lösung 👨‍🔬 und (UV)-Licht. Ich habe mich zu nächst von diesem Video inspirieren lassen und mich für die H2O2- und Hitze-Variante entschieden:

Dafür habe ich eine 3%ige Wasserstoffperoxid-Lösung gekauft. Die bekommt man für ein paar Euro bei Müller oder bei Amazon. Um die Prozedur zu testen, habe ich zunächst einen kleinen Test durchgeführt. An dem Controller waren zwei Teile, die auf Grund von Schäden ersetzt werden müssen und somit als Test- und Referenzobjekt herhalten konnten. Vor dem Test habe ich die Teile noch vom Schutz befreit.

Für die H2O2- & Hitze-Variante habe ich das H2O2 ungefähr im Verhältnis 1:2 mit Leitungswasser gemischt und auf ungefähr 60°C in einem Topf erhitzt und dann das erste Teil für vier Stunden in der Lösung schwimmen lassen. Auch wenn in dem Video keine zusätzliche Lichtquelle verwendet wurde habe ich mich trotzdem dazu entschieden eine Lampe in den Topf strahlen zu lassen. Da in anderen Tutorials immer wieder gesagt wird, dass mit ultraviolettem Licht bzw. viel Licht im Allgemeinen die besten Ergebnisse erzielt werden können, habe ich die hellste/intensivste Lampe genommen, die ich da hatte. Dabei handelt es sich um eine 50W Hochleistungs-LED, die normalerweise als Pflanzbeleuchtung verwendet wird. Was da genau an Wellenlänge rauskommt, kann ich aber nicht sagen ¯_(ツ)_/¯.

upload_d6ea89f738eefc42f97c25fe8b059b08

Nach vier Stunden habe ich das Teil dann aus der Lösung rausgeholt und konnte eine sichtliche Aufhellung wahrnehmen, mit der ich zufrieden war.

upload_aa022cf943e7798ec4102fa8fc4d5514

Also die nächsten Teile rein. Da ich nur eine kleine Flasche H2O2 (250ml) gekauft hatte und demensprechend nicht so viel Flüssigkeit im Topf war, habe ich zunächst nur die Vorderseiten von den Joysticks hineingegeben, da die etwas flacher sind. Wichtig: die Teile sollten komplett bedeckt sein. Nach vier weiteren Stunden habe ich dann die Vorderseiten der Joysticks rausgenommen und mit der Rückseite verglichen.

Die Rückseiten habe ich nach dem selben Verfahren behandelt, allerdings musste ich ein bisschen improvisieren, da ich nicht genug von der Wasserstoffperoxid-Lösung hatte um die Rückseiten komplett zu bedecken. Also habe ich die Lösung in das Glas umgefüllt und noch etwas Wasser dazugegeben und anschließend die Lösung per Wasserbad erhitzt. Diesmal konnte ich die Lampe nicht ordentlich aufbauen und habe sie deshalb weggelassen.

Nach weiteren vier Stunden habe ich die Teile dann rausgeholt. Die Aufhellung war deutlich geringer als bei den anderen Teilen und deshalb habe ich sie einfach weitere drei Stunden in der Lösung schwimmen lassen. Dies hat aber leider nicht so viel gebracht.

Schwarze Handschuhe = Profi.

Da das eigentliche Gehäuse des Controllers viel zu groß für meine Töpfe ist, habe ich hier eine andere Variante verwendet. Bei großen Gehäuseteilen empfiehlt das Internet die Verwendung von Wasserstoffperoxid-Gel. Dabei wird Wasserstoffperoxid mit Glycerin (u.a. feuchtigkeitsspende Eigenschaft) und Xanthan (E 415, Verdickungsmittel) vermengt. Alternativ kann man auch Oxide Cream aus dem Friseurbereich verwenden: https://www.amazon.de/Cream-Oxide-1000ml-12/dp/B008F5MIL6/ (siehe Rezensionen)

Die Vorgehensweise hier ist die folgende: Das zu bleichende Teil wird gleichmäßig mit dem Gel eingestrichen und anschließend nach Möglichkeit luftdicht eingepackt (Zip lock bag oder Frischhaltefolie) und für ca. 24 Stunden in die Sonne oder unter eine Lampe gelegt. Das Einpacken soll verhindern, dass das Gel zu schnell austrocknet.

upload_6a2d3f4ee5276f8b1e9073fa41e02ed5
upload_cea0d71379ec677d0af0c9ac8aa39ffb
upload_1929a65189b798f6e35f3c994feb8194
upload_1b7521fe5f6bf34fff666f52a63ef6ca

Die Alufolie dient nur als Schutz für den Tisch. Anschließend schnell eine Halterung für die Lampe gebaut 👨‍🔧.

upload_59af8eaa640979368dba23ab440c088d

Nach ungefähr 24 Stunden habe ich das Gehäuse dann aus der Frischhaltefolie befreit und ordentlich abgewaschen. Es ist zwar heller geworden, leider jedoch nicht so stark, wie die anderen Teile.

Vorher
upload_bb673d8e9d3929b620a7bd22c605654c
Nachher
upload_2867fe25b2cb184c0d03dedc2571e2ac
upload_30178c7476c0b892cec23fa7e74ff340

Außerdem habe ich die Rückseiten von den Joysticks über Nacht mit unter die Lampe gelegt. Am Morgen sahen die Teile dann so aus:

upload_0d2785a1dd9d6e15bbc9e34d0ff8acb1
upload_10b5b6e8e491bf4aad1c0da3b93c68c7
upload_150b0af427341439e8d55bb83779df56

3D-Druck für Kinder und Jugendliche in der Stadtbibliothek Kreuztal

Wir freuen uns sehr, dass die Möglichkeiten, die so ein Fab Lab bietet, sich langsam aber sicher herumzusprechen scheinen! Vor einiger Zeit kam die Stadtbibliothek Kreuztal auf uns zu und hat angefragt, ob wir nicht einige Workshops für Kinder und Jugendliche gemeinsam angehen sollten. Da lassen wir uns natürlich nicht zwei Mal bitten – gesagt, getan! Es stehen auf dem Plan:

  • Einführungsworkshop 3D-Druck
  • Arduino: Löten, Programmieren, Blinken, Basteln
  • Wearables – Technik zum Anziehen

Letzten Sonntag waren wir also bewaffnet mit zwei 3D-Druckern, einer Ladung freundlicherweise vom Lehrstuhl Pipek geliehenen Notebooks und einer gehörigen Portion Enthusiasmus für den ersten der Workshops in der Stadtbibliothek. Dort haben wir gemeinsam mit vielen Kindern und Jugendlichen an einfacher 3D-Modellierung mit 3D Slash experimentiert:


Die wahre Flut an kreativen, spannenden Projekten, die vollständig durch die Kinder und Jugendlichen gestaltet wurden, wurde dann natürlich auch direkt vor Ort 3D-gedruckt. Hier nur zwei der vielen Beispiele:


Der Workshop hat es auch in die Presse geschafft – nachzulesen auf derwesten! Übrigens: Ganz wie im Artikel erwähnt, geht es uns nicht darum, eine reine Ingenieurs-Generation heranzuzüchten. Wir sind uns lediglich ziemlich sicher, dass ein gewisses Basis-Wissen rund um (Computer-)Technologie in der modernen Welt vergleichbar wichtig ist wie andere Grundfertigkeiten, etwa das Lesen oder das Schreiben. Die spielerische, projektbasierte und experimentelle Herangehensweise über Workshops wie den hier vorgestellten kann unserer Ansicht nach helfen, dieses Ziel zu erreichen.

Wir stehen für Workshops und andere Formate der Zusammenarbeit immer gern zur Verfügung!